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I t  i s  well  known that  many  sol ids  can ex is t  in di f ferent  c rys ta l l ine  modif ica t ions  under  d ive r se  conditions. 
F o r  ce r ta in  t e m p e r a t u r e  and p r e s s u r e  va lues ,  joined by a definite interdependence,  t r ans i t ions  can take place 

�9 f r o m  one c rys ta l l ine  modif icat ion to another .  These  t rans i t ions ,  which a r e  accompanied  by volume shock and 
r e l e a s e  (absorption) of la tent  heat ,  a r e  cal led f i r s t - o r d e r  phase  t rans i t ions .  F i r s t - o r d e r  phase  t rans i t ions  
often occur  a t  high p r e s s u r e s .  The p re sen t  study c o m p r i s e s  a theore t i ca l  ana lys i s  of  ce r t a in  laws of shock 
propaga t ion  in sol ids  undergoing f i r s t - o r d e r  phase  t rans i t ions .  We inves t iga te  shock waves  in the case of 
mode ra t e  p r e s s u r e s ,  so  that  the en t ropy  growth is smal l  and the shock adiaba t  is  c lose to i sen t ropic .  

I t  is  known that  a shock having an ampl i tude  of even 100 kbar  in a solid is  s t i l l  weak. Such a shock 
d i f fe rs  only sl ightly f r o m  a sound wave,  because  it  p ropaga tes  at  c lose  to the sonic veloci ty  and i m p a r t s  to the 
med ium behind t h e  front  jus t  o n e - t e n t h  the value of the wave propagat ion  ve loc i ty  i t s e l f .  

At the s a m e  t ime ,  the p r e s s u r e  in the shock mus t  be l a rge  enough to r ender  s t rength  effects  negligible 
and to p e r m i t  the shock wave to be t r e a t e d  as  a p l a s t i c  phenomenon (the tens i le  s t rength  is  no rma l ly  ~ 1 kbar) .  

w 1 .  F u n d a m e n t a l  E q u a t i o n s  

We cons ider  the p r e s s u r e  to be hydros ta t i c  and inves t iga te  a plane one-d imens iona l  ma thema t i ca l  model .  
The s y s t e m  of  equations descr ib ing  propagat ion  of a f in i te -ampl i tude  wave under  conditions of f i r s t - o r d e r  phase 
t rans i t ions  has  the f o r m  
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891 : c ~ S p ,  8 p ~ :  c~(p) p '  

where  u is  the pa r t i c l e  ve loc i ty  in the wave;  p is  the densi ty  of the mix tu re  of  both phases ;  a is  the m a s s  
f rac t ion  of the second phase  in the sys t em;  Pl, P2, cl, and c 2 a r e  the densi t ies  and sound ve loc i t i es  in the f i r s t  
and second phases ,  r e spec t ive ly ;  and V 1 = 1/pt ,  V 2 = 1/p  2 a r e  the speci f ic  vo lumes  of the f i r s t  and second phases .  

The fourth equation in the s y s t e m  (1.1) c h a r a c t e r i z e s  the re la t ionship  between ~p and 6p in the case  
where  the densi ty  va r i a t ion  is  accompanied  by a re laxa t ion  p r o c e s s  [1]. Here ,  of  course ,  i t  is  n e c e s s a r y  to 
take account  of  the dependence of 8p on the densi ty  va r i a t ions  at p reced ing  t imes .  

The  function ~(t /0) ,  desc r ib ing  the re laxa t ion  p r o c e s s  van i shes  rapidly  for  t > 0 ,  where  0 is  the effect ive 
re laxa t ion  t i m e  (in the g iven case  0 is the c h a r a c t e r i s t i c  in te rphase  t r ans i t ion  t ime) .  

Fo r  def in i teness  we no rma l i ze  the indicated function 

S q) = 1 .  
0 

The h igh- f requency  sound veloci ty  c~ = c~e..r = ca is obtained f r o m  the th i rd  equation of the s y s t e m  (1.1) 
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I t  has  been shown [2] that  the low-f requency  sound veloci ty  co ~ = (Op/Op)=o.,o for f i r s t - o r d e r  phase  t r a n s i -  
t ion in the case  of ze ro  s h e a r  modulus  is given by the expres s ion  

TCp2 

-}- (i--a) [--(~-~)~,--2T ('~--V~, )p (V,-- Vz) + rcpi - ~  ,~-.(V~ - -  V~)~]I" , 

in which C p t  , c p z  a r e  the spec i f ic  heats  of the f i r s t  and second phases  at  constant  p r e s s u r e ,  q is  the latent  heat  
of t rans i t ion ,  and T is  the t e m p e r a t u r e .  

I f  the shock wave p ropaga tes  without phase  t rans i t ion ,  then a = 0 and shock propaga t ion  is  descr ibed  by 
the f i r s t ,  second,  and fifth equations of the s y s t e m  (1.1). 

2.  P r o p a g a t i o n  V e l o c i t y  a n d  P r o f i l e  o f  S h o c k  W a v e s  w i t h  

P h a s e - T r a n s i t i o n  R e l a x a t i o n  a n d  I n c o m p l e t e  C o n v e r s i o n  t o  

t h e  S e c o n d  P h a s e  

We consider  the s y s t e m  (1.1) in the case  of shock propagat ion under  conditions of phase  t rans i t ion.  Po ly -  
morph ic  convers ion  n o r m a l l y  takes  p lace  in a t ime  much g r e a t e r  than the t ime  requi red  for  the sett l ing of 
t h e r m o d y n a m i c  equi l ibr ium in an o rd ina ry  s ing le -phase  medium.  The width of the shock front  in the p re sence  
of phase  t r ans i t ion  is de te rmined  in this  case  by the effect ive t rans i t ion  re laxa t ion  t ime .  We analyze  the 
s t r u c t u r e  of a plane shock wave with phas e - t r an s i t i on  relaxat ion.  We adopt, as  usual  [1], the functions u(x - 
wt), p(x - wt), p(x - wt), whe re  w i s  the shock veloci ty .  

F r o m  the f i r s t  two equations of the s y s t e m  (1.1) we obtain 

p2w~ 
u = - -  woo + w, p = p0w ~ - + P0, (2.1) p p 

where  P0 is  the init ial  densi ty  of  the two-phase  mix ture .  

F r o m  e x p r e s s i o n  (2.i) and the four th  equation of the s y s t e m  (1.1) we obtain 

: - ( t -  r )  L - - 6 - / T .  (2.2) PoW~ - 
0 

We now cons ider  the case  in which the re laxa t ion  t ime  is smal l  in compar i son  with the c h a r a c t e r i s t i c  
wave per iod .  Then the quanti ty 6 p ( t - t ) )  in (2.2) can be expanded in powers  o f t  ' .  Limi t ing  the expansion to 

two t e r m s ,  we ~ v e  p02w 2 = c0~6P ~- ~ ~Sp ~ a28p 
P~ po + ~p "-~ - -  '~ "-~-~' (2.3) 

where  
co  

0 

co  

~ = -5- , c  ~,~ 

I t  i s  seen that  the las t  t e r m  on the r ight -hand side of Eq. (2,3), fl6"p, i s  of o r d e r  ~8p/8=i s m a l l e r  than 
~Sp N ~Sp/~ and can be dropped (~  is  the wave period) .  For  ( 0 V J 0 P ) T ~  (0V1/gp)T, (gVz/0T)p~ (gVJ• 

Opt  ~- Cp2 the dependence of c o on a can be neglected.  

Following [1], we a s s u m e  that  ~ is  a f i r s t - o r d e r  smal l  quantity.  We then obtain f r o m  Eq. (2.3), c o r r e c t  
to s e c o n d - o r d e r  t e r m s ,  

!ASp' - -  (c0/2p0)(6p) 2 ~ (hu/2)Sp = 0, (2.4) 

where  8p' = 05p/O(x -- wt); i~ = ~/2; hu = zl(x = --oo) z~(x = co). 

Equation (2.4) r e p r e s e n t s  the once-d i f fe ren t ia ted  s t a t ionary  B u r g e r s  equation [1] with r e s p e c t  to the 
densi ty  var ia t ion .  
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I t s  solution under  the condition 6p(x= oo) =0 has  t he  f o r m  

~ p =  
P--LAu 
oo 

+ exp - ~  

(2.5) 

I t  i s  known that  the solut ion (2.5) r e p r e s e n t s  a shock wave with a discontinui ty of magni tude (P0/C0)Au 
and a t r ans i t ion  zone of width 6 = 2p /Au,  which van i shes  as  p -*0. The quantity of  m a t t e r  of the new phase  in 

t h e  shock wav e is  de t e rmined  f r o m  the four th  equatio n of  the s y s t e m  (1.1). Thus,  for  ~ <<1 we obtain 

(Z ~ i Co t - ~ e x p - ~  

It  i s  impor t an t  to note tha t  the shock s t r u c t u r e  desc r ibed  by Eq. (2,5) occurs  at  definite in tens i t ies ,  
above which the shock s t r u c t u r e  changes cons iderably .  

Thus ,  the c h a r a c t e r i s t i c  pe r iod  in the shock wave i s  ~ = 5/w = 29/Auw, w .= co + Au/2.Express ions  (2.1), 
(2.3), and (2.5) hold under  the condition 0/~ = Ohuw/2,a << t ,whenee i t  follows that c 2 - c ~  >>Auw, cor responding  
to the condition [2] c ~  > w > %. In the case  c~-c20 << AUw, we obtain f r o m  the fourth equation of the s y s t e m  (1.1) 

(i.i) 

Now the m e d i u m  is  s h o c k - c o m p r e s s e d  f r o m  the s ta te  Pl0 to  the s t a te  Pl without convers ion  to the second 
phase  in the shock f ront .  Exp re s s ion  (2.5) and the r e su l t s  given below a re  qual i ta t ively  consis tent  with the 
r e s u l t s  of Ze l ' dov ich  and R a i z e r  [3]. 

Standard methods  [1] can be used  to deduce the nons ta t ionary  B u r g e r s  equation in the densi ty  va r i a t ion  
f r o m  the s y s t e m  of equations (1.1): 

op + + C o ( p )  - ~  = ~_~.  
ot 

(2.6) 

He re ina f t e r  we neglec t  the com pre s s i b i l i t y  of the pu re  phases  in compar i son  with the compres s ib i l i t y  of 
the m i x t u r e  and take  the dependence of c 0 on ~ into account.  Then, subst i tut ing the express ion  p _ P~ 

into (2.6) and c a r r y i n g  out some  s i m p l e  t r a n s f o r m a t i o n s ,  we obtain the following equation in ~ << 1: 

0 ~  &z 02~ 
o-7 + (c~176  + ~ )  ~-~ = ~L 0 ~  ' 

where  
!B - -A  

COO = C O ( a  ~ 0 )  ; "~ : 2Bpl ]/B' 

Tcp2 A = --  \-~-p ]r(~ / - -  2r_q_ \~T-]p(OV' ~ (V: - -  V1) + - ~ -  (V2 - -  V1) z, 

B - -  \ Op / r  "-q"\"~-h, - - ~  (Vz - -  V~) 2, 

( 2 . 7 )  

A nons ta t ionary  equation of  the type (2.7) i s  known to have  an exac t  solution sa t is fying the ini t ial  condi-  
t ion s (x ,  0) = s 0 and tending a sympto t i ca l l y  to the s t a t i ona ry  fo rm.  

We cons ide r  the s t a t i ona ry  solution of  Eq. (2.7). Le t  T> 0 (the second phase  i s  l e s s  compress ib le ) .  We 

then obtain under  the condition s ( x  = oo) = 0 

Ac~ 4- yh~ = _ v a ~  ' w = coo _ - F - '  A s  = ~ ( x  = - -  oo)  - -  ~ ( x  = o o )  ( 2 . 8 )  

i ~- exp 2~ 

The  solution (2.8) r e p r e s e n t s  a shock fo rmed  at  the leading edge of a quas i s imple  wave with discontinuity 
A s ,  t rans i t ion  zone of width 5 = 2~t/yA~, and propagat ion  ve loc i ty  w = Coo + T A ~ / 2 .  

For  B< A, i .e . ,  for  y <  0 (the second phase  is m o r e  compress ib l e ) ,  we obtain for  ~(x =-~o) =0 

As [ V l As, h~ = a (x = co,) - -  ~ (x = - -  oo). (2.9) 

i -}-exp- 2p~ 
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The solution (2.9) r e p r e s e n t s  a shock fo rmed  a t  the t ra i l ing  edge of a quas i s imple  wave,  propagat ing 

with ve loc i ty  w =coo - ~ / I ~ / 2 .  

For  7 <  0 Eq. (2.7) i s  a l so  sa t i s f ied  by the exp re s s ion  

h(z 
= - -  " I ~ I ~ '  w = Coo -5 [ ~ l A ~ / 2 ,  

~ exp  21~ 

which co r r e sponds  to a r a r e f ac t i on  shock. 

The  p ro f i l e s  of the c o m p r e s s i o n  shocks  (2.5), (2.8), and (2.9), in which complete  convers ion  to the 
second phase  does not take p lace ,  co r r e spond  to a s table  doub le 'wave  s t ruc tu re  with a shock wave p re sen t  in 
the f i r s t  phase .  

w  P r o p a g a t i o n  V e l o c i t y  a n d  P r o f i l e  o f  S h o c k  W a v e s  w i t h  

C o m p l e t e  C o n v e r s i o n  t o  t h e  S e c o n d  P h a s e  . 

Taking the example  of  the evolution of a compress ion  wave, we now consider  the case  of complete  con-  
v e r s i o n  to the second phase .  Le t  the phas e - t r an s i t i on  re laxa t ion  t ime  be smal l ,  e0 ---- (2u/~)O << l (analogous 
r e su l t s  a r e  obtained in the case  of a r a r e f a c t i o n  wave).  

Le t  us a s s u m e  that  a pis ton is  moving accord ing  to the law X = X o ( 1 - c o s  wt) with a ve loc i ty  v<<cl, %, e z. 
In  this  ca se  the wave ampli tude developed in the s y s t e m  is sma l l  and so a lso  is  the magni tude of the d iscon-  
t inuity that can be fo rm ed  in the sys t em.  Suppose that  phase  t rans i t ion  is  ini t iated a t  p r e s s u r e  P=Plo and 
densi ty  p =ploo The end of phase  t rans i t ion  co r r e sponds  to a p r e s s u r e  P=lho and densi ty  p =P20 (bearing in mind 
the ini t ial  va lues  of the p r e s s u r e  P20 and densi ty  P20 in the pure  new phase and the va lues  of the p r e s s u r e  and 
densi ty  a t  the piston).  

Then on the bas i s  o f t  h e  s y s t e m  of equations (1.1) we obtain the following equations for  wave propagat ion 
in the f i r s t  phase:  

0t 

in the phase  mix ture :  

and in the second phase:  

op ap 0~p (3.2) 0-i- -5 {c~ (P) + u (O)} ~ -  = ~ ,  

ap_/2 ap2 at -5 {c~ (p~) -5 u (p~)} ~ -  : 0, (3.3) 

which a r e  in tegra ted  fo r  a given init ial  dis t r ibut ion pl(x, 0), p(x, 0), p2(x, 0). Thus s ta ted,  however ,  the p ro b l em 
admi t s  fu r the r  s impl i f ica t ions .  The t ime of fo rmat ion  of a discontinuity in the two-phase  mix tu re  due to non-  
l i nea r  d is tor t ion  of the wave p rof i l e  is  t0~- c0/X0w2, and the t ime for  the phase  mix tu re  to d i sappear  is  t l ~  
ce/w(c2-c0) , s ince points  of  the prof i le  with p r e s s u r e  p>  P20 a r e  t r a n s p o r t e d  with a ve loc i ty  of o rde r  o 2 > c 0. 
Consequently,  t l / t  0 ~X0wc2/c0(c2-c0),  and for c 2 - e  0 ~ c  e we obtain t l / t0m u / c  0 <<1. This  means  that  the mixed-  
phase  region d i s appea r s  long before  the wave prof i le  su f fe r s  d is tor t ion in it. I nasmuch  as  a shock wave 
develops  a t  the in te r face  between the second phase  and the phase  mix tu re ,  i t s  p rof i le  and veloci ty  will  be 
de t e rmined  p r i m a r i l y  by the d i f ference  c 2 - c  0. Here ,  bear ing  in mind that  cz/X0w2m c l / X o J  >c0/X0 w2 (c0< 
cl, c2) , we can neglect  t e r m s  of the f o r m  u(p)Op/Ox, IzO2p/ax in (3.1)-(3.3) and t r e a t  these  equations in the 
acous t ic  approx imat ion .  I t  is n e c e s s a r y ,  on the other  hand, to take account  of the nonl inear  d is tor t ions  in the 
wave a s  it continues to p ropaga te  a ~ e r  d i sappea rance  of the region of phase  coexis tence .  

Because  of the s m a l l n e s s  of  the wave ampli tude,  we r e g a r d  i t  as  a s imple  wave,  i .e. ,  a s s u m e  that  the 
en t ropy  and app rop r i a t e  Riemann  invar i an t  in i t  do not change [2]. The following expres s ion  holds for  the 
t r a n s p o r t  ve loc i ty  of the medium:  

P Po 

' / "c (~) dp ~c (~) 
u ~ P ~- u~ - -  3 [9 d9, 

Pz P~. 

in which the index 0 c h a r a c t e r i z e s  the ini t ial  s ta te  of the sys t em.  ( F r o m  he re  on we use  the method descr ibed  
in [4].) 
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Assigning d i f f e r en t  constant  values  to the quantity c(p)  (c 1 in the f i r s t  phase,  c o in the two-phase region,  
and c 2 in the second phase), we obtain exp res s ions  for  the ve loc i ty  of the medium f rom the l inear ized  equations 
(3.1)-(3.3) and the equations of continuity: 

U : 7 o  1 ~p fOr Pl6~P]>P0,  

U ~ co6p _~ (c~--Co) (Pl0-- P0) for P~o ~ P ~  PI0, (3.4) 
Po Po 

c~Sp ~ 
u - ~ o +  (P2~176176176176 for P > P 2 , .  

F r o m  (3.4) we obtain for  ~p 

~p = poc~ u f~r u ~ u~o = -~oc~ ( P l o ,  Po), 

po u -t- (co - q) (Pl ~}P='~-o ~ .o--Po) for U l o ~ U ~ U 2 o  -~ 

__ Co (P~o--Po)  + (cl r--:.co) (Plo  - -  Po), ( 3 . 5 )  
Po Po 

~p ----- P--2-~ u ~ ( cz-- Co) (P~o -- Po) -~ (co -- c~) (P~o -- Po) for u ~ u~. 
C 2 C 2 C 9 

With phase t rans i t ion  taking place in the sys tem,  na tura l ly  a discontinuity (shock) is formed right at 
the piston.  I t  i s  known [2] that  a smal l -ampl i tude  wave r ema ins  s imple in the second approximat ion in this 
case,  even in the p r e sence  of discont inui t ies .  We the re fo re  ignore re f lec t ion  f rom the shock front.  The equa- 
t ion for  propagat ion of a s imple  wave genera ted  by a piston moving according to the law X =X0(1-cos  wt) has 
the f o r m  

x = Xo(l -- cos r ~ (t -- ~)[c(p) ~- u(~)], (3.6) 

where  ~" is  the t ime to format ion  of  density p a t  the piston. 

Inasmuch as  u << Co, cl, c~, f rom now on we neglec t  the ve loc i ty  u in compar ison with the sound veloci ty  
in Eq. (3.6). The upper  and lower  l imi ts  of the discontinuity in the shock wave belong s imul taneously  to the 
s imple  waves to the lef t  and to the r ight  of the discontinuity.  Using (3.5), we wri te  the condition for  continuity 
of the mass  flux a c r o s s  a discontinuity moving with ve loc i ty  w re la t ive  to a fixed coordinate  sys tem:  

,c 2 , .C 2 CO 

where  Al=pl0-P0;  A 2 = p ~ o - P o ;  u 2 is the veloci ty  of the medium in the second phase;  and u 0 is the veloci ty  of 
the medium in the two-phase  mix ture .  

We use  (3.6) to wri te  equations descr ib ing  the motion of the discontinuity: 

x = X0{t - -  cos r -~ [t --x~(t)]c~, (3.8) 
z = X0{i --  cos/O~o(t)} + [t --  ~0(0]c0, 

where  x is  the coordinate  of the discontinuity.  

Since the boundaries  of the discontinuity v a r y  with t ime,  the p a r a m e t e r s  T2(t) and r0(t} charac te r iz ing  
the boundar ies  of  the discontinuity a r e  functions of the t ime.  Differentiat ing (3.8} with r e spec t  to the t ime,  we 
obtain, a s  in [4], 

w = ( 1  - -  ~2 )c~ ,  w ---- ( t  - -  ~ 0 ) c  o. ( 3 . 9 )  

In exp res s ions  (3.9) we have omit ted  the t e r m s  ~7~s i~T2,  WT~sivwT0"as smal l  co r rec t ions  of o rde r  
u / c  to the  solution. After  s imple  t r ans fo rmat ions ,  neglecting t e r m s  of the fo rm u2/c, we obtain f rom (3.7) 

( ) t - -  -~ -w/s in  r = 1 - -  w s i n  co% -J- w (c, - -  co) sin o~ (tlo -~ t .~ ) ,  ( 3 . 1 0 )  
v,, ] ~ LC~Co - 

where  tl0 is  the t ime to format ion  of densi ty  Pl0 at  the piston and tz0 is the t ime for  the densi ty  a t  the piston 

to change f r om Pl0 to  P~0- 

Since the discontinui ty in the compress ion  wave is fo rmed  at  the in te r face  between the second phase and 
t h e  phase mix ture ,  exp res s ion  (3.10) does not contain t e r m s  of the sound veloci ty  c 1 for  the f i r s t  phase.  
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As in [4], taking the initial  conditions r2=T0=t  ieto account, we deduce f rom (3.9) 

T~ = co % _{_ (c, --Co)t. (3.11) 
C 2 C$ 

By means of (3.9) mad (3.10) we obtai~ 

sin (r o -t- n)  s i n  n = n s i n  r -t- t~0), ( 3 . 1 2 )  

n = (~12c~)(c~ - Co)(t - -  To). 

Suppose that  a p r e s s u r e  Pl0 is c rea ted  in the medium under  hydros ta t ic  conditions. I f  now a compress ion  
wave is  genera ted  under  these  conditions, then the init ial  p r e s s u r e  of t ransi t iou to the second phase is small ,  
i .e . ,  sin w(tl0 + t20) ~ 0o Accordingly,  we deduce f rom (3.11) and (3.12) 

C2 ~ C0 ~ ' t ' .  C~ ~ C O 
~o = - -  c=+c'----'-~ . =  ~+c' - - -T t"  

Therefore,  the magnitude of the discont inui ty in the compression wave is 

The shock propagat ion veloci ty  is  

6 p  = Po X-h'~ sin co c,  - -  Co c~ c~ -t- Co t. 

w = 2c..Co/(C2 + Co). 

The magnitude of the discontinuity inc reases  at f i rs t ,  r eaches  a maximum at t ime 

t l  = 2 ( o  \ c s - c o ] '  

and d e c r e a s e s  to ze ro  at  t ime  

" co \ c ~  - -  c o / "  

Let  us a s sume  that the p r e s s u r e  p developed in the medium under  hydros ta t ic  compress ion  sat isf ies  the 
condition Pl0 < P < Pz0, i .e . ,  that  the medium is si tuated in the two-phase coexistence region.  If now a r a r e -  
fact ion wave X = - X 0 ( 1 - c o s  cot) is  genera ted  in the invest igated sys tem,  then the r e v e r s e  t rans i t ion  to the f i r s t  
phase i s  ini t iated in the medium.  

In this case  a r a re fac t ion  shock is  formed with discontinuity of magnitude 

which decays  to zero  at t ime 

The shock propagat ion ve loc i ty  is  

X o ~  . C i  ~ c o 8 p = - - p o  c~ s m ~ t ,  

g (c l  "-]- co I 
t ----- - -~  \ c l  - -  co 1" 

w = 2c lco / (c  1 + Co). 

F or  the case in which sin w(tl0 + t20) ~ 1 in express ion  (3.10) it is  obvious that  the t ime of d isappearance 
of the two-phase  region is cha rac t e r i zed  by the condition ~'0 = t ip  Then, with the given approximation sin wt20~ 0, 
we obtain f rom (3.10) subject  to the condition elm e2 : 

W ~ C2, 

which impl ies  (in the given approximation) that the prof i le  of  the compress ion  (rarefact ion)  wave will remain  
unchanged with fur ther  propagation,  because the s imple wave behind the discontinuity propagates  with veloci ty  
e2. 

1 .  
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S P H E R I C A L  D E T O N A T I O N  W A V E S  IN M E D I A  

W I T H  V O L U M E T R I C  V I S C O S I T Y  

G. M. L y a k h o v  a n d  V.  N. O k h i t i n  UDC 624.131+532.529 

Many solid and liquid media have volumetric viscosity appearing in dynamic processes 
associated with change of volume. Below we investigate detonation waves in a medium 
with volumetric viscosity given by the model [1] intended for the description of water- 
saturated soils, liquids with gas bubbles, and other multicomponent media. In these 
media the volume deformations are almost reversible and the tangential s t resses  are 
negligibly small, which makes it possible to investigate the effect of volumetric viscosity 
on the propagation characteristics of intense waves without the complicating effect of 
other factors. The differences in the diagrams of the corresponding shock (dynamic) 
compression and equilibrium state (static compression), and also the time required for 
establishing equilibrium in these media, are small, in the present work the problem of 
propagation of a spherical wave generated by the detonation of an explosive charge in a 
medium with volumetric viscosity and also for a nonviscous medium with the compressi-  
bility d iagram corresponding to the equilibrium state is solved with the use of a computer. 
The corresponding results for plane waves were obtained in [1-3]. In the case of spherical 
waves in unsaturated soils i t  is  necessary to use the Mises-Schleicher  plasticity condition 
[4]. Models where the viscosity te rm is introduced in the plasticity condition [5] are also 
recommended for describing dynamic processes in solids. 

w 1. We consider waves in a water-saturated soil, i.e., a three-dimensional medium (solid particles, 
water, gas bubbles) described by the model of [1]. We denote by ~1, ~z, and ~3 the volume content of the 
gaseous, liquid, and solid components, by V10 , V20 , and V30 their volumes, by Plo, Pao, and P3o their densities, 
by cl0 , c20, and %0 the speed of sound in them, by P0 the density of the three-dimensional medium, and by V 0 
its specific volume. All the quantities pertain to the atmospheric pressure P0, Pc = ~1P10 + ~2P20 + ~aPa0, %+ 
oz2+ ~3=1.  

At a pressure p these parameters  are  denoted by V1, V2, V3, Pt, P2, P3, P, and V, respectively. In water 
with gas bubbles ~3 = 0. 

It is assumed that in the free state all the components are compressed according to the  equation 

P'~176 [ ( ~ ~  )'~-- i] (13) P = Pc + - - - ~ i  

(i is the number of the component) whi ch corresponds to the Pots son adiabat for a gas and the theta equation for 
the liquid and solid components. 

The gas in the medium occurs in the form of small-scale bubbles isolated from each other by the re -  
maining components. Under the action Of a load the liquid and solid components are compressed instantaneous- 
ly, while the gaseous component gets compressed in a finite time, since its compression is caused by the 
displacement of the other components and by the filling of the initial volume of the bubbles by the other com- 
ponents. Therefore, the compression of air  in the medium is given by the equation 
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