THEORY OF SHOCK WAVES IN MEDIA UNDER-
GOING PHASE TRANSITIONS

Yu. Ya. Boguslavskii UDC 534.222.2

It is well known that many solids can exist in different crystalline modifications under diverse conditions.
For certain temperature and pressure values, joined by a definite interdependence, transitions can take place
- from one crystalline modification to another. These transitions, which are accompanied by volume shock and
release (absorption) of latent heat, are called first-order phase transitions. First-order phase transitions
often occur at high pressures. The present study comprises a theoretical analysis of certain laws of shock
propagation in solids undergoing first-order phase transitions. We investigate shock waves in the case of
moderate pressures, so that the entropy growth is small and the shock adiabat is close to isentropic.

It is known that a shock having an amplitude of even 100 kbar in a solid is still weak. Such a shock
differs only slightly from a sound wave, because it propagates at close to the sonic velocity and imparts to the
medium behind the front just one-tenth the value of the wave propagation velocity itself.

At the same time, the pressure in the shock must be large enough to render strength effects negligible
and to permit the shock wave to be treated as a plastic phenomenon (the tensile strength is normally ~ 1 kbar).

§1. Fundamental Equations

We consider the pressure to be hydrostatic and investigate a plane one-dimensional mathematical model.
The system of equations describing propagation of a finite-amplitude wave under conditions of first-order phase
transitions has the form
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where u is the particle velocity in the wave; p is the density of the mixture of both phases; @ is the mass
fraction of the second phase in the system; p4, py, ¢;, and ¢, are the densities and sound velocities in the first
and second phases, respectively; and Vy=1/p;, V,=1/p, are the specific volumes of the first and second phases.

The fourth equation in the system (1.1) characterizes the relationship between dp and 8p in the case
where the density variation is accompanied by a relaxation process [1]. Here, of course, it is necessary to
take account of the dependence of 6p on the density variations at preceding times.

The function ¢(t/8), describing the relaxation process vanishes rapidly for t>8, where 8 is the effective
-relaxation time (in the given case 0 is the characteristic interphase transition time).

For definiteness we normalize the indicated function
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The high-frequency sound velocity ce = Cgosw = ¢, is obtained from the third equation of the system (1.1)

2 2
1 ¥ 1 V5 1
.._——-_1_.a_+_a'.____
A teey

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 119-126, No-
vember-December, 1977. Original article submitted October 25, 1976.

828 0021-8944/77/1806-0828 307.50 ©1978 Plenum Publishing Corporation



It has been shown [2] that the low-frequency sound velocity ¢f = (8p/3p)upn for first-order phase transi-
tion in the case of zero shear modulus is given by the expression
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in which epy, Cpe are the specific heats of the first and second phases at constant pressure, q is the latent heat
of transition, and T is the temperature.

If the shock wave propagates without phase transition, then o =0 and shock propagation is described by
the first, second, and fifth equations of the system (1.1).

§2. Propagation Velocity and Profile of Shock Waves with

Phase-Transition Relaxation and Incomplete Conversion to

tile Second Phase

We consider the system (1.1) in the case of shock propagation under conditions of phase transition. Poly-
morphic conversion normally takes place in a time much greater than the time required for the settling of
thermodynamic equilibrium in an ordinary single-phase medium., The width of the shock front in the presence
of phase transition is determined in this case by the effective transition relaxation time. We analyze the
structure of a plane shock wave with phase-transition relaxation. We adopt, as usual {1], the functions ulx —
wt), plx — wt), p(x — wt), where wis the shock velocity.

From the first two equations of the system (1.1) we obtain
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where p, is the initial density of the two-phase mixture.
From expression (2.1} and the fourth equation of the system (1.1} we obtain
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We now consider the case in which the relaxation time is small in comparison with the characteristic
wave period. Then the quantity ép(t —t") in (2.2) can be expanded in powers of t'. Limiting the expansion to
two terms, we have

o _pZle (2.3)

plu?
pﬂwz -'—Z)_o—_l_ 269 + g 522 ?

where

E=(ck— CS)O 5 1@ (1te) dpss
¢

p—t(2 fc(%)ezzgu?w (1) .

It is seen that the last term on the right-hand side of Eq. (2.3), 88p, is of order B8p/E* smaller than
E0p ~ t6p/E and can be dropped (E is the wave period). For (3V,/dp)T~ (8V,/9p)T, (8V2/8T)p (BVI/BT)p,
“Cp1 ™ cpy the dependence of ¢y on @ can be neglected.

Following [1], we assume that £ is a first-order small quantity, We then obtain from Eq. (2.3), correct
to second-order terms,

ubp” — (co/2p0)(6p)* -+ (Au/2)8p = 0, - (2.9
where 8p’ = 88p/d(x — wi); p = ¥/2; Au = u{z = —o0) — u(x = o).

Equation (2.4) represents the once-differentiated stationary Burgers equation [1] with respect to the
density variation.
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Its solution under the condition 8p(x=«)=0 has the form

o A (2.5)
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It is known that the solution (2.5) represents a shock wave with a discontinuity of magnitude (py/c,)Au

and a transition zone of width § =2 /Au, which vanishes asp —0. The quantity of matter of the new phase in
“the shock wave is determined from the fourth equation of the system (1.1). Thus, for @ <1 we obtain
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It is important to note that the shock structure described by Eg. (2.5) occurs at definite intensities,
above which the shock structure changes considerably.

Thus, the characteristic period in the shock wave i8 B = 8/ = 2p/Auw, w = ¢ + Au/" Expressions (2.1),
(2.3), and (2.5) hold under the condition 6/2 == 8Auw/2y < 1,whence it follows that cZ — ¢2>> Auw, corresponding
. to the condition [2] c,>W>¢,. In the case c%o—co <« Auw, we obtain from the fourth equation of the system (1.1)
(1.1)

8p = c%8p.

Now the medium is shock-compressed from the state py, to the state p; without conversion to the second
phase in the shock front. Expression (2.5) and the results given below are qualitatively consistent with the
results of Zel'dovich and Raizer [3].

Standard methods [1] can be used to deduce the nonstationary Burgers equation in the density variation
from the system of equations (1.1):
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Hereinafter we neglect the compressibility of the pure phases in comparison with the compressibility of
the mixture and take the dependence of ¢, on @ into account. Then, substituting the expression o — P
oY1=V,
! “( 7 2)
into (2.6) and carrying out some simple transformations, we obtain the following equation in & «1:
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. A nonstationary equation of the type (2.7) is known to have an exact solution satisfying the initial condi-
tion a(x, 0) =a, and tending asymptotically to the stationary form.

We consider the stationary solution of Eq. (2.7). Let y>0 (the second phase is less compressible). We
then obtain under the condition a(x=)=0

az_—A?__—’ wzco‘)-*—?A_a, Aasa(xz_—oo)—a,(z-:oo) (2-8)
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The solution (2.8) represents a shock formed at the leading edge of a quasisimple wave with discontinuity
Aa, transition zone of width = 2u/yAx, and propagation velocity w=cyp+ YAQ/2.
For B< A, i.e., for ¥< 0 (the second phase is more compressible), we obtain for oz(x —e) =0
aa (RAT-C v a(x—OO)—OL(:v——OO) (2.9)
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The solution (2.9) represents a shock formed at the trailing edge of a quasisimple wave, propagating
with velocity w=cgy — | v |Ax /2.
For y< 0 Eq. (2.7) is also satisfied by the expression
Aa
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which corresponds to a rarefaction shock.

The profiles of the compression shocks (2.5), (2.8), and (2.9), in which complete conversion to the
second phase does not take place, correspond to a stable double~wave structure with a shock wave present in
the first phase.

§3. Propagation Velocity and Profile of Shock Waves with

Complete Conversion to the Second Phase

Taking the example of the evolution of a compression wave, we now consider the case of complete con-
version to the second phase. Let the phase-transition relaxation time be small, 08 = (2n/8)8 < 1 (analogous
results are obtained in the case of a rarefaction wave).

Let us assume that a piston is moving according to the law X=X (1—cos wt) with a velocity v<«c¢y, ¢y, C;.
In this case the wave amplitude developed in the system is small and so also is the magnitude of the discon-
tinuity that can be formed in the system. Suppose that phase transition is initiated at pressure p=py,; and
density p =py. The end of phase transition corresponds to a pressure p=pyy and density p =py, (bearing in mind
the initial values of the pressure p,, and density p,, in the pure new phase and the values of the pressure and
density at the piston).

Then on the basis of the system of equations (1.1} we obtain the following equations for wave propagation
in the first phase:

P14 ey (pa) + u (P} 52 (3.1)
in the phase mixture;
90 - (3.2)
and in the second phase:
Bet{es (po) + u (P} 52 = | (3.3)

which are integrated for a given initial distribution p,(x, 0}, p(x, 0), p,x, 0). Thus stated, however, the problem
admits further simplifications. The time of formation of a discontinuity in the two-phase mixture dite to non-
linear distortion of the wave profile is t,~ ¢)/X,w?, and the time for the phase mixture to disappear is t;~
cy/wlcy—cy), since points of the profile with pressure p>p,, are transported with a velocity of order c;> ¢;.
Consequently, t;/ty ~Xywe,/cyle,—cy), and for ¢, — ¢y~ c; we obtain t;/ty~u/cy«<1. This means that the mixed-
phase region disappears long before the wave profile suffers distortion in it. Inasmuch as a shock wave
develops at the interface between the second phase and the phase mixture, its profile and velocity will be
determined primarily by the difference c, — ¢, Here, bearing in mind that c,/X,w?® c;/X,w? > ¢p/X w? (¢ <

¢y, Cy)y we can neglect terms of the form u(p)dp/ ox, p8% /ox in (3.1)-(3.3) and treat these equations in the
acoustic approximation. It is necessary, on the other hand, to take account of the nonlinear distortions in the
wave as it continues to propagate after disappearance of the region of phase coexistence.

Because of the smallness of the wave amplitude, we regard it as a simple wave, i.e., assume that the
entropy and appropriate Riemann invariant in it do not change [2]. The following expression holds for the
transport velocity of the medium:

0 [<3
[y —yy— [
u j 0 dp = u, 0 dp,
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in which the index 0 characterizes the initial state of the system. (From here on we use the method described
in [4].)
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Asgsigning different constant values to the quantity e(p) (cy in the first phase, ¢y in the two-phase region,
and c, in the second phase), we obtain expressions for the velocity of the medium from the linearized equations
(3.1)~(3.3) and the equations of continuity: ,

u= —% 8p for Pi1o>> P> P
U= % + Elp_e—co) (P1o— 0o) for Pgg =P > Pigs (3.4
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| 8p = 22 0 - L2 (g, — pg) 4 02 (03 — ) for 4> g,

With phase transition taking place in the system, naturally a discontinuity (shock) is formed right at
the piston. It is known [2] that a small-amplitude wave remains simple in the second approximation in this
case, even in the presence of discontinuities. We therefore ignore reflection from the shock front. The equa-
tion for propagation of a simple wave generated by a piston moving according to the law X=X,(1—cos wt) has
the form _

z = Xo(l — cos at) + (£ — 1)lelp) + u(n)}, (3.8)
where T is the time to formation of density p at the piston.

Inasmuch as u < ¢, ¢y, Cy, from now on we neglect the velocity u in comparison with the sound velocity
in Eq. (3.6). The upper and lower limits of the discontinuity in the shock wave belong simultaneously fo the
simple waves to the left and to the right of the discontinuity. Using (3.5), we write the condition for continuity
of the mags flux across a discontinuity moving with velocity w relative to a fixed coordinate system:

foot tots pfazep 4 oo g}, ) = oy 4 282+ L= A (g — ), (3.7)
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where Ay=p4—pg; By=pgg—pPy; Uj is the velocity of the medium in the second phase; and u, is-the velocity of
the medium in the two-phase mixture.

We use (3.6) to write equations describing the motion of the discontinuity:

z = Xo{1l — cos ots(t)} + [t — 15(t) e, : (3.8)
z = Xo{1 — cos ote()} + [t — (D) e,

where x is the coordinate of the discontinuity.

Since the boundaries of the discontinuity vary with time, the parameters 7,(t) and To(t) characterizing
the boundaries of the discontinuity are functions of the time. Differentiating (3.8) with respect to the time, we
_obtain, as in [4],

w=(1—12)ey w=(1—10)¢,. (3.9)

In expressions (3.9) we have omitted the terms wT}sinw Ty, W T, sinwT, as small corrections of order

u/c to the solution. After simple transformations, neglecting terms of the form u?/c, we obtain from (3.7)

(1 — cl) sin T, = (1 — ?wo—) sin oty + w (c—tg——c:") sin e (39 + f59), (3.10)

where t,, is the time to formation of density py, at the piston and t is the time for the density at the piston ‘
to change from pj; to pyg. .

Since the discontinuity in the compression wave is formed at the interface between the second phase and
the phase mixture, expression (3.10) does not contain terms of the sound velocity ¢ for the first phase.
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As in [4], taking the initial conditions T,=7;=t into account, we deduce from (3.9)

5
3

7= 2y al, (3.11)

By means of (3.9) and (3.10) we obtain

sin (0Ty 4 r) sin 7 = n sin oty + i), (3.12)‘
r = (@/2e){c; — eg)(t — To)

Suppose that a pressure py, is created in the medium under hydrostatic conditions. If now a compression
wave is generated under these conditions, then the initial pressure of transition to the second phase is small,
i.e., sin wlty+ tyy) # 0. Accordingly, we deduce from (3.11) and (3.12)

Cg == Cqy

¢35+ ¢

Cg == 0y

cg+cg t.

Ty = — b, Ty=
Therefore, the magnitude of the discontinuity in the compression wave is

Cy — Co t

€3 Co

8p =p, ‘f:_“’ sin ®
2
The shock propagation velocity is
w = 26,64/ (cy + Co)-

The magnitude of the discontinuity increases at first, reaches a maximum at time
t o= n ( cs 4o )
17 30 \¢y—cp /!

and decreases to zero at time

t, 1(%_-_%0_)

® \¢g—¢g

Let us assume that the pressure p developed in the medium under hydrostatic compression satisfies the
condition py < p < Py, i.e., that the medium is situated in the two-phase coexistence region. If now a rare-
faction wave X =—X,(1—~cos wt) is generated in the investigated system, then the reverse transition to the first
phase is initiated in the medium.,

In this case a rarefaction shock is formed with discontinuity of magnitude

o1~ ¢y

i
€1+ ¢ £

X0 .
8p = — 0, —5'1— sin ®
which decays to zero at time

T feg ¢
AEYET
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The shock propagation velocity is
w = ‘20109/((:1 + ¢y)-

For the case in which sin w(ty+ ty) ~ 1 in expression (3.10) it is obvious that the time of disappearance
of the two-phase region is characterized by the condition 7=ty Then, withthegiven approximation sin why™ 0,
we obtain from (3.10) subject to the condition ¢;= ¢,. .

w = Cq,

which implies (in the given approximation) that the profile of the compression (rarefaction) wave will remain
unchanged with further propagation, because the simple wave behind the discontinuity propagates with velocity
Coe
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SPHERICAL DETONATION WAVES IN MEDIA
WITH VOLUMETRIC VISCOSITY

G. M. Lyakhov and V. N. Okhitin ‘ UDC 624.131+532.529

Many solid and liquid media have volumetric viscosity appearing in dynamic processes
associated with change of volume. Below we investigate detonation waves in a medium
with volumetric viscosity given by the model [1] intended for the description of water-
saturated soils, liquids with gas bubbles, and other multicomponent media. In these

media the volume deformations are almost reversible and the tangential stresses are
negligibly small, which makes it possible to investigate the effect of volumetric viscosity
on the propagation characteristics of intense waves without the complicating effect of
other factors. The differences in the diagrams of the corresponding shock (dynamic)
compression and equilibrium state (static compression), and also the time required for
establishing equilibrium in these media, are small. In the present work the problem of
propagation of a spherical wave generated by the detonation of an explosive charge in a
medium with volumetric viscosity and also for a nonviscous medium with the compressi-
bility diagram. corresponding to the equilibrium state is solved with the use of a computer.
The corresponding results for plane waves were obtained in [1-3]. In the case of spherical
waves in unsaturated soils it is necessary to use the Mises—Schleicher plasticity condition
[4]. Models where the viscosity term is introduced in the plasticity condition [5] are also
recommended for describing dynamic processes in solids.

§1. We consider waves in a water-saturated soil, i.e., a three-dimensional medium (solid particles,
water, gas bubbles) described by the model of {1]. We denote by @4, @y, and @3 the volume content of the
gaseous, liquid, and solid components, by Vy,, Vyg, and Vg, their volumes, by pyg, pgp, and pg, their densities,
by cy9s Cpgs and cg the speed of sound in them, by p, the density of the three-dimensional medium, and by V,
its specific volume. All the quantities pertain to the atmospheric pressure py, py= Q30+ CUgpg+ UgP3zy, A4+
a,+ ag=1.

At a pressure p these parameters are denoted by V4, V,, Vg, py, Py, P3, 0, and V, respectively. In water
with gas bubbles a3=0.

It is assumed that in the free state all the components are compressed according to the equation

e /v, Vi
p=py+ 22 [(_Vz) — 1] (1.1)
(i is the number of the component) which corresponds tothe Poisson adiabat for a gas and the theta equation for
the liquid and solid components.

The gas in the medium occurs in the form of small-scale bubbles isolated from each other by the re-
maining components. Under the action of a load the liquid and solid components are compressed instantaneous-
1y, while the gaseous component gets compressed in a finite time, since its compression is caused by the
displacement of the other components and by the filling of the initial volume of the bubbles by the other com-
ponents. Therefore, the compression of air in the medium is given by the equation
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